"Energy conversion factors table"


Converting Mw into mmscf, BHP into BOED, Tons into flows?
If you are a proposal manager, application engineer or marketing manager
here you find a conversion table for your energy factors!


Approximate energy conversion factors table

HHV @15°C, 101325Pa Power Heat Flow Volume Weight Oil
Mw BHP Gj/d MMBtud MMscfd MMnmc/y m3LNG/d LNG tons/y Boed TOE/d
Power Mw 1 1341.0 86.40 81.89 0.08085 0.792 3.686 568.2 14.00 2.064
BHP 0.0007457 1 0.06443 0.06107 6.092E-05 0.00059 0.002749 0.4237 0.01044 0.001539
Heat Gj/d 0.01157 15.52 1 0.948 0.0009358 0.0091638 0.04266 6.577 0.1620 0.0239
MMBtud 0.0122 16.38 1.055 1 0.0009873 0.0096683 0.04501 6.939 0.1709 0.02520
Flow MMscfd 12.37 16586 1069 1013 1 9.8 45.59 7028 173.1 25.52
MMnmc/y 1.263 1694 109.1 103.4 0.1021 1 4.655 717.7 17.68 2.606
Volume m3LNG/d 0.2713 363.8 23.44 22.22 0.02194 0.2148 1 154.2 3.798 0.5599
Weight LNG tons/y 0.001760 2.360 0.1521 0.1441 0.0001423 0.001393 0.006487 1 0.02463 0.003632
Oil Boed 0.07144 95.81 6.173 5.850 0.005776 0.05656 0.2633 40.59 1 0.1474
Toe/d 0.4846 648.8 41.87 39.68 0.03918 0.3837 1.786 275.3 6.783 1


Need powerful KPIs for your Engineering?

Get our free Vendor Document Register tool
and nail down those transmittals!

try the Controlroom on-line


A complete Engineering Document Management tool
adopted by SMBs in the O&G, EPC and Energy industries



You can try the ControlRoom now, using this data template:


VDR-template.xls

After copying the data into the frame, scroll to see the graph.

How to read the Graph:

  • The Blue bars
    refer to drawings still to be issued. They count the days to the required first issue. Negative values are days "to" first issue, Positive values are first issue's delay days
  • The Red bars
    refer to drawings under revision. They count the days since the document is in the hands of one of the party. Negative values are days since drawing has returned, Positive values are days since drawing has been sent
  • The Green bars
    refer to Final drawings. They count the days since the drawing has been Finalized. Negative values are drawings returned Final, Positive values are drawings sent as Final
  • The Dark Red stacked bars
    appear when the revision allowed time has been surpassed.


Note about the Energy Conversion Table:


Selling to the Oil & Gas and Energy industry, requires to jump from natural gas to oil, from power to physical quantities: tons, barrels, cubic meters, from British to international standards…This table wants to be a hand while gauging a new or an old project, a prospective investment or the purchasing of a new equipment.

These factors are taken into account:

  • Oil barrels, BOED, Tons of Oil, TOE / day
  • LNG natural gas cubic meters, metric tons per day
  • Methane normal cubic meters Ncm, standard cubic feet scf, per day or per year
  • Heat equivalent Giga Joules, GJ, or British Thermal Units BTU
  • Power in Mega watts, MW or British Horse Power BHP


Note the 6 categories:
Power, Heat, Flow, Volume, Weight and Oil.
They should guide you.

Assumptions behind these figures:

The first is that we choose absolute value. For Natural Gas, e.g., we choose an HHV of 55.5 Mj/Kg.
This is theoretical. No pipeline will give you gas with such a purity. But then you can apply your corrective factors, your efficiency factors, and come to a conclusion. The second is that we did our bet, both in researching accurate values, and doing accurate calculations. But you use this table at your own risk. However, if you discover an error, we will be happy to know and thank you in advance. The third is the basic figures I used. They are listed in the second table at bottom page.

Unit of Measure Value Note
ncf/nmc 35,31 -
scf/nmc 37,33 -
cal/J 4,1868 -
j/btu 1055,056 -
t/b 7,3 API 33
BHP/Kw 0,7457 -
CH4 Mol weight 16,043 g/mol
R 8,31434 j/mol/K
CH4 HHV 55,500 @ 15,4 °C MJ/kg
CH4 LHV 55,009 @ 15,4 °C MJ/kg
molar volume CH4 (cm/mol) 0,022354315 @ 0 °C , 101325 Pa
molar volume CH4 (cm/mol) 0,023593844 @ 15 °C , 101325 Pa
density kg/ncm 0,71766905 @ 0 °C , 101325 Pa
density kg/scm 0,6799655 @ 15 °C , 101325 Pa
liquid density kg/cm 422,36 @ 101325 Pa
mol/nmc 44,73409275 -
mol/scm 42,38393692 -
scm/ncm 1,05544921 measured
scm/ncm 1,057714421 pv=nrt
TOE 41,868 Gj
1 barrel 158,9873 liters
oil density 0,858 kg/liter @ 59 °F
oil density 7,335 barrels/metric ton
1 boe 5,8 * 10 ^6 Btu @ 59 °F - HHV
oil HHV 45,25 Mj/kg @59 °F
oil HHV 38,84 Mj/liter
oil LHV 42,98 Mj/kg @59 °F
oil LHV 36,89 Mj/liter


Gas properties for Natural Gas components:

Component Mole Wt Hydrogen Atoms Carbon Atoms Cp (1) HHV (2) LHV Auto-ignition T (F) (3) Flame Speed @ xx (in/s)(4)
0.60 0.80 1.00 1.20 1.40
H2 2.0159 2 0 3.4010 324.2 273.9 752 31.74 56.10 78.99 93.75 106.30
C1 16.0430 4 1 0.5266 1009.7 909.1 999 3.83 10.95 14.65 12.54 5.67
C2 30.0690 6 2 0.4080 1768.7 1617.8 959 4.49 11.12 15.91 16.32 10.40
C3 44.0960 8 3 .03887 2517.2 2315.9 871 5.36 11.48 15.53 15.42 9.51
IC4 58.1220 10 4 0.3867 3256.6 3001.0 864 6.34 12.58 17.39 18.04 13.67
NC4 58.1220 10 4 0.3951 3262.0 3010.5 761 5.03 10.50 14.44 13.89 7.87
IC5 72.1510 12 5 0.3829 3999.7 3697.9 788 From CompressorTech2 APRIL 2015, pg 76
NC5 72.1510 12 5 0.3880 4008.7 3706.8 496
C6 86.1780 14 6 0.3857 4756.1 4403.9 433
C7 100.2050 16 7 0.3842 5502.8 5100.3 433
C8 114.2320 18 8 0.3831 6248.9 5796.1 428
H2S 34.0760 2 0 0.2370 586.7 637.0 500
(1) Specific heat Cp at costant pressure conditions near atmospheric
(2) Heating values in BTU/scf at 14.696 psia, 60°F, and uncorrected for compressibility from GPA 2545-09
(3) Auto-ignitions temperatures from “Flammability Characteristics of Combustible Gases & Vapors”
(4) Laminar Flame Speed from University of Southern California Combustion Kinetics Laboratory
C1 methane
C2 ethane
C3propane
C4 isobutane - normal Butane
C5 isopentane
C6 hexane
C7 heptane
C8 octane
H2S hydrogen sulfide
H2 hydrogen


Give it a try and let me know how it worked for you!

Flavio

Contacts: